Sharp integral inequalities for the dyadic maximal operator and applications
نویسندگان
چکیده
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملTwo-Weight Orlicz Type Integral Inequalities for the Maximal Operator
p A v = u , (1) holds for t = ) t ( = ) t ( , but not if 1 = p . Also for each < p 1 there exists a pair p A ) v , u ( so that (1) fails in the special case t = ) t ( = ) t ( [3, p. 395]. In these exceptional cases we have a weak type inequality. An excellent reference is the book by J.Garcia-Cuerva and J.L.Rubio de Francia [3]. We refer the reader interested in the current stat...
متن کاملSharp Function Inequalities and Boundness for Toeplitz Type Operator Related to General Fractional Singular Integral Operator
We establish some sharp maximal function inequalities for the Toeplitz type operator, which is related to certain fractional singular integral operator with general kernel. These results are helpful to investigate the boundedness of the operator on Lebesgue, Morrey and Triebel–Lizorkin spaces respectively.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملa sharp maximal function estimate for vector-valued multilinear singular integral operator
we establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. as an application, we obtain the $(l^p, l^q)$-norm inequality for vector-valued multilinear operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2019
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-019-02254-4